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Surface of geologic model
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M odd dice at South-North coordinate= 130 m
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Forceinputsfrom idealized force vs. timerecord of
tracked vehicle
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For ceinputs from dynamic model of M1A1

* Track and suspension details
emphasized, including:
—Individual track block & road
whesd! inertial/mechanical properties

— Track pin configuration (single or
dual)

—Road arm stiffnessand damping
— Track tension control
e M1A1: 195 bodies, 356 DOF

e Hull & turret are single sprung mass
(w/ rall, pitch, and yaw) —normal

e Soil/track reactionsincluded
* Vehicledriven by torqueat drive \ /l |
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Vehicle paths over topographic surface
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Propagation modeling

Objective

- Models of sizesfor
battlefield systems >
- Propagate YU vehicle 5
ground vibrationsto "
Sensors

Particle velocity w[m/s]; t=17.636 s 3

Approach
- AFOSR, FDTD
- 3-D wave eguation
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- Soil attenuation

- Topography,
heter ogeneous geol.
- Complex ground
forcing

Details

- 1.6-m spacing
-~286" 210" 80m

- 180 nstime step

- 108-processor domain

elevation [m]




Surface vibration from idealized vehicle for ces

Propagation

Features

Effects of

*\/ehicle
Speed

*Shallow
bedr ock

Ravine and
water table

Qutcrop

*Material
damping

elevation [m]
B =2

Particle velocity w[m/s]; 1+=1.001 s




Surface vibration from idealized vehicle for ces
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Vertical particle velocity from idealized vehicle
at four “recelver” locations
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Spectrogram of w signal from idealized vehicle
at outcrop recelver
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Movement of M1A1 in vehicle dynamicy
ground for ce prediction computation




Surface vibration from M1A1 mode forces

Propagation
Features

Effects of Particle velocity w [m/s]; 1+=0.003 s
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Surface vibration from M1A1 mode forces
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Vertical particlevelocity from M 1A1 model forces
at four “recaiver” locations
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Spectrogram of w signal from M 1A1 model
at recelver between outcrop and trench
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Vlrtual deployment of UGS sasmic network
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Surfacevibration from calibration forces

Propagation
Features 4

Effects of Particle velocity w[m/s]; +=0.004 s 3
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Calibration data recorded by seismic network

Pwr (dB 1(m/s)®)

Metwork Waveforms
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Four calibration events:
known location, time, and magnitude

Note changes in character
of each calibration event



Corrections calculated by seismic network
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Example correctionsto calibrated pulse locations
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Adapted network tracking performance
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Themoving vehicle

simulations;

e producerealistic and
expected results

e produce seismic o
vehicle signatures
with features of
measur ed signatures

o arethefirst such
smulations
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Summary, continued

Example applications:
 Demonstrate use of
the smulationsfor 150
system development
and user stuational
awar eness
e Arethefirst high
population UGS 0.
network tracking
results of their kind
 Demonstrate method
for uniquely adapting
UGS network to
environment
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Conclusion

Theseresults provide a strong indication that
simulations have arolein seismic system
development and acquisition

Ther impact can be seen as:
* reducing system costs and development time
e Improving system performance in complex environments
 allowing propagation physicsto be incorporated into
system algorithms



